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Abstract

The storage capacity of the three-dimensional rotation neural network model is discussed
by using the signal-to-noise theory. Some results discussed in the Hopfield model, the complex
phasor model and the Hamilton neural network are obtained. Compared to other muitistate neural
networks, a novel property of the model is that the storage capacity for a fixed neuronal state
varies with the different combinations of numbers of rotation angles and axes. The maximum
storage capacity can be obtained for a special combination of numbers of rotation angles and
axes.

1. Introduction

In recent years, growing interest has been focused on the multistate neural network
models in order to process the multistate gray or color patterns. A complex state such as
a color or gray pixel in the pattern can be expressed by a multistate neuron with these
schemes. Variant neural networks can aid the emerging technology of neurocomputing
by suggesting or analyzing new design schemes. Viewed from biology, these schemes
perhaps are more realistic and may be helpful for understanding some of the basic
aspects of biological information processing.

Kanter proposed a model composed of Potts neurons with Q possible discrete states
[1]. Rieger used neurons represented by Q real numbers [2]. Another possibility for a
multistate neuron is the so-called circular representation, in which the state of the neu-
ron is represented by points on the circle. One is the complex phasor model proposed
by Noest [3] and the other is the clock model proposed by Cook [4]. The complex
phasor model and the clock model can be regarded as an extension of the Hopfield
model [5] to the clock-type ones. The layered phasor neural networks [6] are discussed
by Bolle. By introducing the 2"-element numbers to the network, we discussed the
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2"-element number neural model [7,8]. Actually, the four-state complex neural network
[9] discussed by Zhou is a special case of the complex phasor model and the 2”-element
number model. Nakamura considers a general extension of the Hopfield model using
D-dimensional spins (i.e. D-dimensional unit vectors) as neurons [10].

In the view of the rotation, the bipolar (+1) Hopfield model [5] is the one-dimen-
sional rotation neural network model. The complex phasor neural network model [3]
is the two-dimensional rotation neural network model. Along the lines of rotation,
the D-dimensional rotation neural networks can be set up naturally. In this paper, the
multistate three-dimensional rotation neural network model is discussed, in which the
three-dimensional rotation operator is the state of the neuron. Many discussed neural
models are the special cases of the present model, such as the bipolar Hopfield model
[5], the four-state complex neural model [8,9], the complex phasor model [3] and the
sixteen-state Hamilton neural model [7,8]. Compared to other multistate neural net-
works, the model allows various combinations of states of rotation angles and axes
for a fixed neuron state. Therefore, a novel property of the model is that the storage
capacity for a fixed neuronal state Q varies with the different combinations of states of
rotation angles and axes, and there is a maximum storage capacity for a special com-
bination of numbers of rotation angles and axes. In view of application, the advantage
of the model is that it is especially appropriate for recognizing the color patterns that
are composed of three basic colors widely used in computers.

The paper is organized as follows: In Section 2, the general framework of the three-
dimensional rotation neural network is discussed. After introducing adiabatic-like ap-
proximation to the model in Section 3, the following two sections are devoted to
analyze the correctly iterating probabilities of the rotation angle and axis. Then the
storage capacity of the model is discussed in Section 6. Finally, the conclusion and
application are discussed.

2. The three-dimensional rotation neural network

We know that the rotation operator R(m, @) in a three-dimensional space, with its
rotation axis n = ({cosf; + jcos 8, + kcos 63) and rotation angle 6y around the axis
n, can be expressed as follows:

R(n,0p) = cos 6y + sinOy(icos by + jcos By + kcosfs). (N

Here, i, j, k are the three basic vectors of the coordinate axes, the rotation angle
0<8 < 27 and the direction angles 0<6,,0, < n,—n/2<6; < n/2. The conjugate
rotation of R(m, ) is R*(n,0y) = R(n,2n — ) and we have (RiR;)* = RYR. It
should be noted that normally R;R; # R3R,.

By introducing the concept of three-dimensional rotation into the neural network,
the multistate discrete three-dimensional rotation model can be set up. The state of a
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Fig. 1. Sketch map of the values of rotation angle and its mapping area.

neuron is defined as a rotation operator and can be expressed as follows:
S = R(m;,o;) = R(icos Bi; +jcos B + kcos f3;,0;) . 2)

Here i = 1,2,...,4) and j = 1,2,...,qo. It means that there are g, discrete axes m; with
the direction angles B;, B2, B3 and gq discrete rotation angles o, around the axes for the
neuron states. So there are Q = goq, discrete neuron states for the three-dimensional
rotation model. Normally, we can let the distribution of the axes and rotation an-
gles be homogeneous. Fig. 1 shows the go rotation angles (15025 s Xy oy Oy ) =
(0,27/q0,...,2(j — 1)m/qgo,...,2(q0 — 1)7/qo) that homogeneously distribute on the 27
rotational plane.

Suppose there are N neurons and M patterns S* = (81,88 ,...»Sk) in which pu =
1,2,...,M stored in the network. The synaptic connection matrix is given by the
Hebbian learning rule:

M
Jy =Y SHSH”. 3)
u=1

One can easily see that J,;-" = J;. If a pattern S(¢) is put into the network, the iterating
dynamics of the model depends on the effective local field H,

y
Hi(t) =) JySi(t). (4)

J=1

Actually, the effective local field H; is the total rotation operator, but is commonly not
the normalized rotation operator,

Hi(t) = [Hi(1)|R(ni(2), 00:(1)) . (5)

The energy function E(S) can also be defined for the state S with the interacting J:
A

E(S) = —533 SN STS (6)

=l j=I

The energy function is an extension of that of the bipolar Hopfield model [5], the
complex phasor model [11,12] and the Hamilton neural model [13].
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The nonlinear iterating dynamics of the network from S(¢) to S(¢+ 1) is defined as
follows:

Ri(my (2 + 1), 0;(2 + 1)) = O(H;(1)) = O(R(mi(1), 00i(1))) - (7)

For the discrete model, the mapping rule of the transform function @ is usually defined
as that it maps a range of rotation operators to one of the discrete neuronal rotation
states. To the rotation angle, because the g, discrete neuronal rotation angles are ho-
mogeneously distributed on the 27 circle plane, the rotation angle 6y of the local field
is mapped by the function @ to its nearest neuronal rotation angle «;. As shown in
Fig. 1, there are go sectors that consist of gp bisectors of the go neuronal state pixels.
Any rotation angle in a specific sector is mapped by @ to the neuronal rotation angle
expressed by the central pixel. For example, if —n/go <68y < m/qop, it is mapped to
ap = 0; if (2j — 3)m/go <o < (2j — 1)7/qo, it is mapped to a; = 2(j — 1)n/go. To the
direction angle, there are g; neuronal rotation axes, and all the axes in the 27/g; solid
angle around each neuronal axis is mapped by @ to that neuronal axis.
If we let g =1 and m = i, the state of the neuron is

S = cosa; + isino; = exp(ia;). (8)

Actually, it is the complex phasor neural network [3,12]. Furthermore, if defining gy =2
and o; = 0,2, = 7, the states of the neuron are $ = =1 and it becomes the Hopfield
model [5]. Or if defining g¢ =4, and a = +n/4, £37/4, the states of the neuron are
S=(=+1 £i)/v?2 that goes to the four-state complex model [8,9].

If we define the centerlines of eight quadrants as the rotation axes m of the neuron
states and g9 = 2 with the rotation angles aj,a; in which sina; = \/5/4, cosay = %
and oy = 7 + u, the neuron is of sixteen states: (£1 i+ j £ k)/4. Simply we can
let the neuron states be (+1 & i £ j+ k). The iterating dynamics (7) can be defined
as: each axis in a specific quadrant is mapped to its centerline; the rotation angle 0y is
mapped to a; if —7/2 < 8y < /2, otherwise to xp. Then there is a simple expression for
the iterating dynamics: whenever a real or imaginary component of A is nonnegative,
a positive unit is drawn out for the corresponding component of @H; otherwise, a
negative unit drawn out. Therefore, the sixteen-state Hamilton neural network [7,8]
is obtained. From the view of the 2"-element numbers, the complex phasor model
[3,11,12] is an extension of the four-state complex neural network [8,9]. Similarly, the
three-dimensional model is an extension of the sixteen-state Hamilton number neural
network.

3. The adiabatic-like approximation
To analyse the storage capacity of the model, i.e. I' = M/N, let the number of

neurons N and the number of stored patterns M approach infinity. At first the adiabatic-
like approximation is discussed in this section. If the pattern S#=' is put into the
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network, the effective local fields H; can be expanded as follows:

Ho; = Ncosa, + dg; ®)
Hy; = Nsina/ cos B}, + 4y;, (10)
Hy; = Nsina} cos ), + 4z , th
Hy; = Nsina] cos B}, + 43, (12)

where o} and B}, (m = 1,2,3) are the rotation angle and the direction angles of the
ith neuron in the first stored pattern, respectively. Clearly, in the expanded expressions
Egs. (9)—(12), the local fields are divided into two parts: the first terms are the signals
while the second terms the noises. The expressions for the noise terms Ag; and 4,
can be written out respectively. For example, the noise term of the rotation angle part
is expressed as follows:

M N
Agi = E E [cos ot (cos cxj’-‘ cos ocjl + sin ocj‘-l cos /i’fj sin a} cos ﬁ%j

u=2 j=1
+sin 2 cos By sina; cos By, + sin ' cos B, sin a cos ;)

+ sin o cos B(sin af cos B} cos o — cosal sina} cos B}

+sinaf cos f5; sin a} cos B3; — sin of cos By, sin o) cos B;)

+ sin o cos B4, (sin af cos By cos ozjl — cosaf sin oc}- cos By,

+sinaf cos By sinaj cos B — sinal' cos B sin f cos B3;)

+ sin o}’ cos B (sin of cos ff; cos a} — cos 2} sin o] cos Bs;

+ sin o’ cos By sin oc} cos Béj — sin o cos fiy; sin oc} cos ﬁ{j)] i (13)

Owing to the random character of the stored patterns and their independence to each
other, it is reasonable to suppose that the noise terms are governed by a Gaussian
distribution

1 2
o) = = exp (—5";) , (14)

with expectation value (Ay;) = (4,,) = 0 and standard deviation

o= {4 = (4)'* = V/NWM - 1)/2.

Here () indicates the average of the stored patterns.

Using the signal-to-noise theory to analyze the storage capacity I, the crux is to
obtain the probability p that the local field can be correctly iterated with the dynamics
equation (7), i.e. to solve the probability of

O(H;) = R(m!, %) = R(icos B}, + jcos B}, + kcos B}, al ). (15)
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Because of the coupling of the direction angles and the rotation angle, it is difficult
to analyze Eqgs. (9)—(12) directly. But we can rewrite them as Eqs. (18) and (25)
correctly if the local field can be correctly iterated. Thus we introduce the adiabatic-
like approximation: The coupling of the direction angles and the rotation angle can be
ignored with statistical average. It means that when we deal with one kind of angle,
the other is taken as a constant with its statistical average. Then the local field can be
divided into two parts:

(A) For the rotation angle, due to the approximation, we take the direction angles
as constants. Then one can easily combine Egs. (10)—(12) as Eq. (17) and have

HE = Ncosa) + 4§, (16)

H{; = Nsina! + 4f; . (17)
The above two equations can be rewritten in the form of a complex:

Hoi = Nexp(ia) ) + Ao exp(iw) . (18)

Here, N is the weight that the rotation angle o can be correctly iterated. For the noise
term, i.e. the second term, the modulus Ay = /4§ + 4, is governed by the positive
Gaussian distribution

, 2 2
() =29(r) =\ = exp (—%;) (19)
0

with fooo f(r)dr = 1, with average zero and standard deviation

oo = (A7 + (4g)'"* = V/NM — 1) (20)

and the phasor w is homogeneously distributed over the range (0,27n), owing to the
symmetrization of 45 and 4.

(B) For the direction angles, i.e. the rotation axis, due to the adiabatic-like approxi-
mation, the rotation angle «/ is taken as a constant and sin %, is replaced by its standard

deviation
n= (sin2 1[1)”2 = ? . (1)
Then
H,; = yNcos B, + Ay;, (22)
Hy; = 3N cos B, + A s (23)
Hi; = nN cos By, + A3 . (24)

And expressed as a three dimensional vector

H;=3nNm! + 4, . (25)
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Fig. 2. The complex plane geometric interpretation of iterating dynamics of rotation angle.

Here nN is the weight that the rotation axis m, = (icos B}, +jcos B, +k cos B3;) can be
correctly iterated, and A; = Ay;i + A4;j + As;k is the noise term. Also, the modulus |4;]
is governed by the positive Gaussian distribution (19) with average zero and standard
deviation

a1 = (A5)'7 + (432 + (43)? = /AN(M - 1)/2 (26)

and the direction of 4 is homogeneously distributed on the 4x solid angle, i.e. sphero-
symimetry.

After introducing adiabatic-like approximation, the probability p that the local field
of the ith neuron can be correctly iterated with the dynamics equation (7) equals the
product of the correctly iterating probabilities of rotation angle (18) and the rotation
axis (25). In the following two sections, the correctly iterating probabilities of the
rotation angle and the rotation axis are analyzed, respectively.

4. The correctly iterating probability of the rotation angle

The correctly iterating probability of the rotation angle is determined by Eq. (18).
Because the model is symmetric under the rotation operator, without loss of generality,
assume that the rotation angle o) = 0, then

Hoi = N + Agexpliow) = |Ho| exp(i¢;) . (27)
According to the dynamical equation (7), the condition that the rotation angle « can
be iterated correctly is —7/qo < ¢; < n/qo. Based on the view of geometry, which is
shown in Fig. 2, N is expressed as the vector OA on the real axis, and the noise
term Ay exp(iw) is expressed as the vector AB. The length of the vector AB follows a
Gaussian distribution, and the angle / xAB is w. Then Hy; is the sum of the vectors
OA and AB, i.e. OB=0A + AB. Accordingly, the condition —n/qo < ¢; < m/go means
that —n/qo < /. AOB < nt/qq, i.e. point B must fall into the sector COD.
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Fig. 3. The sketch map of the integration equation (28).

So the probability p; that the rotation angle is able to iterate correctly equals the
probability that point B falls in the sector COD, and is then expressed as

Yo N
plz/f(r)dr+/( *zarccos—> f(r)ydr
0

o

+/ ( - —arccos—]g ! arccos—) f(rydr. (28)
N

Here, ry = N sin(n/qq) is the radius of the circle with center at A and tangent to
the sector ~ COD, as shown in Fig. 3 and shaded with dotted lines. The probability
is expressed as the integration of the weighted Gaussian function f(r), in which the
weight coefficient indicates the proportion of the sector COD compared to the whole
circle in the corresponding distance r. The first term is expressed as the probability
that point B falls in the circular area 1 that is shown in Fig. 3. The second term
is expressed as the probability that the point B falls in the area 2 shaded with in-
verse-oblique lines shown in Fig. 3, consisting of the intersection of the sector COD
and the circular band with center at point A, inner radius ry, and outer radius N.
The third term is expressed as the probability that the point B falls in the area 3
shaded with oblique lines shown in Fig. 3, consisting of the intersection of the sector
COD and the circular band area with center at point A, inner radius N, and outer
radius oc.
The probability p; can be rewritten as the follows:

p1=1 —/ arccos f(r)dr

_71 arccos( )f(r)dr _ 7071{ ccos( )f(r)dr. (29)
N N
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If N is very large, one can write

7 arccos (;—3) f(r)ydr~ 7 arccos (%0) f(r)dr. (30)
N N

And when » varies from ry to oo, arccos(rg/r) varies from 0 to 7/2; and the computer
numerical simulation result indicates that the change of p; with ry mainly depends
on the change of the function f(r) with . So the function arccos(rg/r) can be re-
placed by a constant coefficient 4 with 0 < 4 < n/2 and moved outside the definite
integral [14]. Therefore, the expression for the probability p; can be approximated
by

24 T
plzl——n—/f(r)dr

24 [ 1 n
- \/ exp( ZFSIH q0>] 3D

5. The correctly iterating probability of the rotation axis

The correctly iterating probability of the direction angles is determined by Eq. (25).
As in the above section,; without loss of generality, assume that the rotation axis m, =
k, then Eq. (25) is

H; = yNk+ 4; . (32)

Based on the view of solid geometry, which is shown in Fig. 4, nNk is expressed as
the vector OF on the k-axis, and the noise term 4; as the vector EF. The length of the
vector EF follows the Gaussian distribution (19), and the direction sphero-symmetry.
Then H; is the vectors OF = QE+ EF. Now, according to solid geometry, the condition
that the rotation axis can be iterated correctly, i.e. @(H;) = k, is that the pixel F must
fall into a special space with the 27/g; solid angle, in which the axis k is included.
Without loss of generality, here let the space be a circular cone space OGH with the
centerline k shown in Fig. 4.

Accordingly, the probability p, that the rotation axis can be iterated correctly equals
to the probability that point F falls in the circular cone OGH. Similar to p;, the
probability p, is expressed as the integration of the weighted Gaussian function f(r),
and the weight coefficient indicates the proportion of the circular cone OGH compared
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Fig. 4. The solid geometric interpretation of iterating dynamics of the rotation axis.

with the spherical space in the corresponding distance 7, and can be expressed as

Ry N
p2:/f(r)dr+/%(2—cosq)~cos¢)f(r)dr
0 Ro
-I-/%(l —cos@)f(r)dr, (33)
N

in which Ry = #N/q;v/2¢q; — 1 is the radius of the sphere I with center at E and tangent
to circular cone OGH, as shown in Fig. 5 and the angles ¢, ¢ are expressed as

. R
<p=lp+arcsm—0,
,

R
¢ = arcsin 70 -y, 34)
with

1
Y = arccos <] — —) .
qo0

Here, the first term of Eq. (33) is expressed as the probability that point F falls in the
spheroid space I shown in Fig. 5. The second term is expressed as the probability that
the point F falls in the space II shaded with inverse-oblique lines shown in Fig. 5,
consisting of the intersection of the circular cone OGH and the spheroid band with
center at point E, inner radius Ry, and outer radius #N. The third term is expressed as
the probability that the point F falls in the space III shaded with oblique lines shown
in Fig. 5, consisting of the intersection of the circular cone OGH and the spheroid
band space with center at point E, inner radius #N, and outer radius oo.
Similar to the analysis of Eq. (30), the probability p, can be solved as

pr=1 —/\/]—- L cosyf(r)dr
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Fig. 5. The sketch map of the integration equation (33).

it 2
—%/<1+\/1—I:—3cosd/—1%sinw> f(r)dr

nN

3 1V 291 — 1
_1—<1—a> [1—\/1—exp<— 6Fq%>]. (35)

6. The storage capacity of the model

From the results of the above two sections, the probability that the local field can
be correctly iterated with the dynamics equation (7) can be obtained, i.e. p = pip3.
The erroneously iterating probability of the ith neuron is

P=1-—p

24
~— |1—4/1—exp ——l—sin2£
i 2r qo
1 2 2ql—]>
+l1—-—= I -4/l —exp|—
( Q1> { \/ p( 6Iq;
A 1 ., 1 1Y 2q1 — 1
~ =~ - — —{1-— - . 36
nexp( 5 Sin q0>+2< ql) exp( 6T ) (36)

Then on average, the number of erroneously iterating neurons for the input pattern
S! is NP. To obtain the absolute storage capacity I, of the model that determines
how many patterns are embedded as the equilibrium states of the network in the strict
sense, we assume that the number of error components follows approximately the
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Poisson distribution [15]. Therefore, the probability that S! is indeed a stable attractor
is given approximately by the expression

¢ =exp(—NP) — 1. 37

Now suppose we require that this probability be a fixed number very near 1; then
inverting the preceding expression one can get NP = C, where C = —In ¢ is a constant
approaching zero. This means that the number of erroneously iterating neurons is zero.
Then the absolute storage capacity I, of the model is determined by

Cc 4 1 .2n) 1( 1)2 <2q1—1)
— = —exp| — sin“ — )+ -1 ——)exp|——F—— - 38
N 2P ( 20 s 90 2 g P76, absd: (38)

One can find the relationship between the absolute storage capacity and the number
of neurons is shown as I o< 1/InN. This result holds true to its specific models:
Hopfield model [15-17], four-state complex model [8,9], the Hamilton model [7,8] and
the complex phasor model [14].

As mentioned above, the complex phasor model is the specific model of the three-
dimensional rotation model only with Q = ¢q; and g, = 1. For this case, the second
term of Eq. (38) becomes zero and the absolute storage capacity can be written as

Ly o Hlﬁ sin2 S . (39)
It goes to the result that obtained in [14].

For the Hopfield model, the absolute storage capacity [ 15-17] determines how many
patterns can be really stored in the network in the strict sense. However, the associative
memory can work well when I' < Iy ~ 0.14 [18,19]. From analogy with spin glasses,
one can imagine that there are many metastable states, which are separated by high
energy barriers and exist around the memorized patterns, and that the retrieval close
to the stored pattern becomes possible when I' is smaller than the effective storage
capacity Iy. Similarly, to get the effective storage capacity of the three-dimensional
rotation model, we let the number of erroneously iterating neurons NP = 6N in which
the constant & — 0, instead of NP = C — 0. Then the effective storage capacity is
determined by

A 1 ., 1 1\ 2g, — 1
0= —exp| — sin’ —) + = (1 - —) ex (— . (40)
- p( Ty ) T2 7)) TP\ eIy

Compared to the absolute storage capacity, the effective storage capacity is not depen-
dent on the neuron number N.

For Eq. (40) with go=2 and ¢; =1, i.e. the Hopfield model, Iy = —1/2In(én/4) ~
0.144 is obtained for A = 1.0 and & = 0.009. From Egs. (38) and (40), one can see
that the storage capacity decreases with the increase of Q = goqi, e.g. the storage
capacity decreases from 0.144 to 0.03 and to 0.003 with the increase of (go, 1) from
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0.03

0.02

0.01

19
2 12 22 2 42 52

Fig. 6. The effective storage capacity I" via ¢o with fixed q) = 3,10,30 and 100.

(2,1) to (3,3) and to (20,20), and
-0 with @ — oo.

To discuss in detail the dependence of the effective storage capacity Iy with go and
q1, we have plotted the solution of Eq. (40) for 4 = 1.0 and é = 0.01 in Figs. 6
and 7, respectively. We can interpret the result by considering the geometry shown
in Figs. 3 and 5: as @ increases, the area of the sector COD and the volume of the
circular cone OGH decrease, i.e. the probability that points B and F fall in the sector
and cone decreases.

Here compared to other multistate neural networks, a novel property is shown for
the model: With the fixed state number Q, the storage capacity varies with different
combinations of go and ¢;. The computer numerical simulation is given in Fig. 8 with
0 = 15,30,50,100 and 500. With a fixed Q, there is a maximum storage capacity for
a special combination of ¢y and ¢;. In Fig. 8, the maximum storage capacity via Q is
also given with dashed line. It should be pointed out that only the values with go and
g1 integer are usable. We can interpret the result as follows. At the maximum point
the distribution or the utilization of the iterating regions of the rotation angles and the
axes of the neuron states is the best. On the other hand, at the two extremes with
go=2,q1 = Q/2 and qo = O, g1 = 1, the distribution of the iterating regions of the



36 J.W. Shuai et al. | Physica A 238 (1997) 23-38

-

0.05
A Aige=2
B:q,=10
C:q,=20
*D: g, =30
W
8
-
C
D
] I 4 1 1 i %
2 12 22 k¥) 42 52

Fig. 7. The effective storage capacity I' via ¢, with fixed go = 2, 10,20 and 30.

neuron states for the iterating dynamical Eq. (7) is extremely unreasonable. Therefore,
the storage capacities are the local minima.

7. Discussion and application

The three-dimensional rotation neural network is an extension of the Hopfield model,
the four-state complex model, the complex phasor model and the Hamilton model. In
this paper, the absolute and effective storage capacities of the three-dimensional ro-
tation neural network model are discussed by using the signal-to-noise theory with
the adiabatic-like approximation. Some results discussed in the Hopfield model, the
complex phasor model and the Hamilton neural network are obtained. Unlike other
multistate neural networks, for a fixed neuron state 0, the model allows various com-
binations of states of rotation angles and axes. Therefore, a novel property of the model
is that, for a fixed neuron state (, the storage capacity varies with different combina-
tions of go and g, and the maximum storage capacity can be obtained for a special
combination of go and gq;. The storage capacity of the model decreases fast with the
increase of the neuron state and approaches zero as the neuron state approaches to
infinity.
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Fig. 8. The effective storage capacity I’ via gg with fixed neuron state 0 = 15,30,50,100 and 500. The
maximum storage capacity via Q is given with dashed line.

Due to the four components of the neuron state, the model can be applied to recog-
nize the color patterns that are widely used in computers. The corresponding relation-
ship between the three-basic-color computer code and the three-dimensional rotation
neuron code of the color patterns can be set up naturally and simply: The three di-
rection angles can be corresponded to the three basic colors and the rotation angle
corresponded to the color saturation degree. For example, the recognition of sixteen-
level color pattern with the sixteen-state Hamilton neural network model is discussed
in detail in [20].
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